
Twitter, as we know, is a highly popular social networking and micro-blogging

service used by millions worldwide. Each status or tweet as we call it is a 140

character text message. Registered users can read and post tweets, but

unregistered users can only view them. Text mining and sentiment analysis

are some of the hottest topics in the analytics domain these days. Analysts

are always looking to crunch thousands of tweets to gain insights on different

topics, be it popular sporting events such as the FIFA World Cup or to know

when the next product is going to be launched by Apple.

Today, we are going to see how we can build a web app for doing sentiment

analysis of tweets using R, the most popular statistical language. For building

the front end, we are going to be using the ‘Shiny’ package to make our life

easier and we will be running R code in the backend for getting tweets from

twitter and analyzing their sentiment.

The first step would be to establish an authorized connection with Twitter for

getting tweets based on different search parameters. For doing that, you can

follow the steps mentioned in this document which includes the R code

necessary to achieve that: http://rpubs.com/dipanzan/twitterAccess

After obtaining a connection, the next step would be to use the ‘shiny’

package to develop our app. This is a web framework for R, developed

by RStudio. Each app contains a server file (server.R) for the backend

computation and a user interface file (ui.R) for the frontend user interface.

Building a Twitter Sentiment Analysis App using R

4th Aug, 2015

B Y D ATAW E AV E

© DataWeave 2019 Page 1 of 4 pages

http://shiny.rstudio.com/
http://rpubs.com/dipanzan/twitterAccess
http://shiny.rstudio.com/

You can get the code for the app from my github repository here which is

fairly well documented but I will explain the main features anyway.

The first step would be to develop the UI of the application, you can take a

look at the ui.R file, we have a left sidebar, where we take input from the user

in two text fields for either twitter hashtags or handles for comparing the

sentiment. We also create a slider for selecting the number of tweets we want

to retrieve from twitter. The right panel consists of four tabs, here we display

the sentiment plots, word clouds and raw tweets for both the entities in

respective tabs as shown below.

Coming to the backend, remember to also copy the two dictionary files,

‘negative_words.txt’ and ‘positive_words.txt’ from the repository because we

will be using them for analyzing and scoring terms from tweets. On taking a

close look at the server.R file, you can notice the following operations taking

place.

– The ‘TweetFrame’ function sends the request query to Twitter, retrieves the

tweets and aggregates it into a data frame. — The ‘CleanTweets’ function runs

a series of regexes to clean tweets and extract proper words from them. —

The ‘numoftweets’ function calculates the number of tweets. — The

‘wordcloudentity’ function creates the word clouds from the tweets. — The

‘sentimentalanalysis’ and ‘score.sentiment’ functions performs the sentiment

analysis for the tweets.

These functions are called in reactive code segments to enable the app to

react instantly to change in user input. The functions are documented

extensively but I’ll explain the underlying concept for sentiment analysis and

word clouds which are generated.

© DataWeave 2019 Page 2 of 4 pages

https://github.com/dipanjanS/MyShinyApps/tree/master/twitter-analysis
https://cdnblog.dataweave.com/wp-content/uploads/2015/08/18.png

For word clouds, we get the text from all the tweets, remove punctuation and

stop words and then form a term document frequency matrix and sort it in

decreasing order to get the terms which occur the most frequently in all the

tweets and then form a word cloud figure based on those tweets. An example

obtained from the app is shown below for hashtags ‘#thrilled’ and

‘#frustrated’.

For sentiment analysis, we use Jeffrey Breen’s sentiment analysis algorithm

cited here, where we clean the tweets, split tweets into terms and compare

them with our positive and negative dictionaries and determine the overall

score of the tweet from the different terms. A positive score denoted positive

sentiment, a score of 0 denotes neutral sentiment and a negative score

denotes negative sentiment. A more extensive and advanced n-gram analysis

can also be done but that story is for another day. An example obtained from

the app is shown below for hashtags ‘#thrilled’ and ‘#frustrated’.

© DataWeave 2019 Page 3 of 4 pages

https://cdnblog.dataweave.com/wp-content/uploads/2015/08/19.png
http://jeffreybreen.wordpress.com/2011/07/04/twitter-text-mining-r-slides/

After getting the server and UI code, the next step is to deploy it in the server,

we will be using shinyapps.io (https://www.shinyapps.io/) server which

allows you to host your R web apps free of charge. If you already have the

code loaded up in RStudio, you can deploy it from there using the

‘deployApp()’ command. For more details on app building and hosting check

out the official tutorial here.

You can check out a live demo of the app

here: https://dipanjan.shinyapps.io/twitter-analysis/

It’s still under development so suggestions are always welcome.

Originally published at blog.dataweave.in.

- DataWeave Marketing

4th Aug, 2015

BRAND PERCEPTION

© DataWeave 2019 Page 4 of 4 pages

https://cdnblog.dataweave.com/wp-content/uploads/2015/08/110.png
https://www.shinyapps.io/
https://github.com/rstudio/shinyapps/blob/master/guide/guide.md
https://dipanjan.shinyapps.io/twitter-analysis/
http://blog.dataweave.in/post/96618078833/building-a-twitter-sentiment-analysis-app-using-r
https://dataweave.com/blog/author/marketing
https://dataweave.com/blog/year/2015
https://dataweave.com/blog/category/brand-perception

