
Rest APIs play a crucial role in the exchange of data between internal systems

of an enterprise, or when connecting with external services.

When an organization relies on APIs to deliver a service to its clients, the

APIs’ performance is crucial, and can make or break the success of the

service. It is, therefore, essential to consider and choose an appropriate API

framework during the design phase of development. Benefits of choosing the

right API framework include the ability to deploy applications at scale,

ensuring agility of performance, and future-proofing front-end technologies.

At DataWeave, we provide Competitive Intelligence as a Service to retailers

and consumer brands by aggregating Web data at scale and distilling them to

produce actionable competitive insights. To this end, our proprietary data

aggregation and analysis platform captures and compiles over a hundred

million data points from the Web each day. Sure enough, our platform relies

on APIs to deliver data and insights to our customers, as well as for

communication between internal subsystems.

Some Python REST API frameworks we use are:

Tornado — which supports asynchronous requests

CherryPy — which is multi-threaded

Flask-Gunicorn — which enables easy worker management

CherryPy vs Sanic: Which Python API Framework is
Faster?

24th Jan, 2018

B Y R A H U L

© DataWeave 2019 Page 1 of 6 pages

It is essential to evaluate API frameworks depending on the demands of your

tech platforms and your objectives. At DataWeave, we assess them based on

their speed and their ability to support high concurrency. So far, we’ve been

using CherryPy, a widely used framework, which has served us well.

CherryPy

An easy to use API framework, Cherrypy does not require complex

customizations, runs out of the box, and supports concurrency. At

DataWeave, we rely on CherryPy to access configurations, serve data to and

from different datastores, and deliver customized insights to our customers.

So far, this framework has displayed very impressive performance.

However, a couple of months ago, we were in the process of migrating to

python 3 (from python 2), opening doors to a new API framework written

exclusively for python 3 — Sanic.

Sanic

Sanic uses the same framework that libuv uses, and hence is a good

contender for being fast.

(Libuv is an asynchronous event handler, and one of the reasons for its agility

is its ability to handle asynchronous events through callbacks. More info on

libuv can be found here)

In fact, Sanic is reported to be one of the fastest API frameworks in the world

today, and uses the same event handler framework as nodejs, which is known

to serve fast APIs. More information on Sanic can be found here.

So we asked ourselves, should we move from CherryPy to Sanic?

Before jumping on the hype bandwagon, we looked to first benchmark Sanic

with CherryPy.

CherryPy vs Sanic

Objective

Benchmark CherryPy and Sanic to process 500 concurrent requests, at a rate

of 3500 requests per second.

Test Setup

Machine configuration: 4 VCPUs/ 8GB RAM.

Network Cloud: GCE

Number of Cherrypy/Sanic APIs: 3 (inserting data into 3 topics of a Kafka cluster)

Testing tool : apache benchmarking (ab)

Payload size: All requests are POST requests with 2.1KB of payload.

API Details

© DataWeave 2019 Page 2 of 6 pages

https://nikhilm.github.io/uvbook/introduction.html
https://magic.io/blog/uvloop-blazing-fast-python-networking/
https://sanic.readthedocs.io/en/latest/

Sanic: In Async mode

Cherrypy: 10 concurrent threads in each API — a total of 30 concurrent threads

Concurrency: Tested APIs at various concurrency levels. The concurrency varied between

10 and 500

Number of requests: 1,00,000

Results

Requests Completion: A lower mean and a lower spread indicate better

performance

© DataWeave 2019 Page 3 of 6 pages

https://cdnblog.dataweave.com/wp-content/uploads/2018/01/1-3.png

Observation

When the concurrency is as low as 10, there is not much difference between

the performance of the two API frameworks. However, as the concurrency

increases, Sanic’s performance becomes more predictable, and the API

framework functions with lower response times.

Requests / Second: Higher values indicate faster performance

© DataWeave 2019 Page 4 of 6 pages

https://cdnblog.dataweave.com/wp-content/uploads/2018/01/2-1.png

Sanic clearly achieves higher requests/second because:

Sanic is running in Async mode

The mean response time for Sanic is much lower, compared to CherryPy

Failures: Lower values indicate better reliability

Number of non-2xx responses increased for CherryPy with increase in

concurrency. In contrast, number of failed requests in Sanic were below 10,

even at high concurrency values.

Conclusion

© DataWeave 2019 Page 5 of 6 pages

https://cdnblog.dataweave.com/wp-content/uploads/2018/01/3-1.png
https://cdnblog.dataweave.com/wp-content/uploads/2018/01/4-1.png

Sanic clearly outperformed CherryPy, and was much faster, while supporting

higher concurrency and requests per second, and displaying significantly

lower failure rates.

Following these results, we transitioned to Sanic for ingesting high volume

data into our datastores, and started seeing much faster and reliable

performance. We now aggregate much larger volumes of data from the Web,

at faster rates.

Of course, as mentioned earlier in the article, it is important to evaluate your

API framework based on the nuances of your setup and its relevant

objectives. In our setup, Sanic definitely seems to perform better than

CherryPy.

What do you think? Let me know your thoughts in the comments section

below.

If you’re curious to know more about DataWeave’s technology platform,

check out our website, and if you wish to join our team, check out our jobs

page!

- Rahul Ramesh

Technical Architect at DataWeave, 24th Jan, 2018

DATA ENGINEERING

© DataWeave 2019 Page 6 of 6 pages

https://www.dataweave.com/?utm_source=blog&utm_medium=tech&utm_campaign=cherrypy_sanic
https://dataweave.com/about/become-dataweaver
https://dataweave.com/blog/author/rahul
https://dataweave.com/blog/year/2018
https://dataweave.com/blog/category/data-engineering

