
In today’s world, the analysis of any social media stream can reap invaluable

information about, well, pretty much everything. If you are a business catering

to a large number of consumers, it is a very important tool for understanding

and analyzing the market’s perception about you, and how your audience

reacts to whatever you present before them.

At DataWeave, we sat down to create a setup that would do this for some e-

commerce stores and retail brands. And the first social network we decided

to track was the micro-blogging giant, Twitter. Twitter is a great medium for

engaging with your audience. It’s also a very efficient marketing channel to

reach out to a large number of people.

Data Collection

The very first issue that needs to be tackled is collecting the data itself. Now

quite understandably, Twitter protects its data vigorously. However, it does

have a pretty solid REST API for data distribution purposes too. The API is

simple, nothing too complex, and returns data in the easy to use JSON

format. Take a look at the timeline API, for example. That’s quite

straightforward and has a lot of detailed information.

The issue with the Twitter API however, is that it is seriously rate limited.

Every function can be called in a range of 15–180 times in a 15-minute window.

While this is good enough for small projects not needing much data, for any

real-world application however, these rate limits can be really frustrating. To

Implementing DataWeave’s Social API for Social Data
Analysis

4th Aug, 2015

B Y D ATAW E AV E

© DataWeave 2019 Page 1 of 6 pages

https://dev.twitter.com/docs/api/1.1
https://dev.twitter.com/docs/api/1.1/get/statuses/user_timeline

avoid this, we used the Streaming API, which creates a long-lived HTTP GET

request that continuously streams tweets from the public timeline.

Also, Twitter seems to suddenly return null values in the middle of the stream,

which can make the streamer crash if we don’t take care. As for us, we simply

threw away all null data before it reached the analysis phase, and as an added

precaution, designed a simple e-mail alert for when the streamer crashed.

Data Storage

Next is data storage. Data is traditionally stored in tables, using RDBMS. But

for this, we decided to use MongoDB, as a document store seemed quite

suitable for our needs. While I didn’t have much clue about MongoDB or what

purpose it’s going to serve at first, I realized that is a seriously good

alternative to MySQL, PostgreSQL and other relational schema-based data

stores for a lot of applications.

Some of its advantages that I very soon found out were: documents-based

data model that are very easy to handle analogous to Python dictionaries,

and support for expressive queries. I recommend using this for some of your

DB projects. You can play about with it here.

Data Processing

Next comes data processing. While data processing in MongoDB is simple, it

can also be a hard thing to learn, especially for someone like me, who had no

experience anywhere outside SQL. But MongoDB queries are simple to learn

once the basics are clear.

For example, in a DB DWSocial with a collection tweets, the syntax for

getting all tweets would be something like this in a Python environment:

rt = list(db.tweets.find())

The list type-cast here is necessary, because without it, the output is simply a

MongoDB reference, with no value. Now, to find all tweets where user_id is

1234, we have

rt = list(db.retweets.find({ 'user_id': 1234 })

Apart from this, we used regexes to detect specific types of tweets, if they

were, for example, “offers”, “discounts”, and “deals”. For this, we used the

Python re library, that deals with regexes. Suffice is to say, my reaction to

regexes for the first two days was much like

Once again, its just initial stumbles. After some (okay, quite some) help from

Thothadri, Murthy and Jyotiska, I finally managed a basic parser that could

detect which tweets were offers, discounts and deals. A small code snippet is

here for this purpose.

© DataWeave 2019 Page 2 of 6 pages

https://dev.twitter.com/docs/api/streaming
http://try.mongodb.org/

def deal(id):

re_offers = re.compile(r'''

\b

(?:

deals?

|

offers?

|

discount

|

promotion

|

sale

|

rs?

|

rs\?

|

inr\s*([\d\.,])+

|

([\d\.,])+\s*inr

)

\b

|

\b\d+%

© DataWeave 2019 Page 3 of 6 pages

|

\$\d+\b

''',

re.I|re.X)

x = list(tweets.find({'user_id' : id,'created_at': { '$gte': fourteen_days_ago }}))

mylist = []

newlist = []

for a in x:

b = re_offers.findall(a.get('text'))

if b:

print a.get('id')

mylist.append(a.get('id'))

w = list(db.retweets.find({ 'id' : a.get('id') }))

if w:

mydict = {'id' : a.get('id'), 'rt_count' : w[0].get('rt_count'), 'text' : a.get('tex

t'), 'terms' : b}

else:

mydict = {'id' : a.get('id'), 'rt_count' : 0, 'text' : a.get('text'), 'terms' : b}

track.insert(mydict)

This is much less complicated than it seems. And it also brings us to our final

step–integrating all our queries into a REST-ful API.

Data Serving

For this, mulitple web-frameworks are available. The ones we did consider

were Flask, Django and Bottle.

Weighing the pros and cons of every framework can be tedious. I did find this

awesome presentation on slideshare though, that succinctly summarizes each

framework. You can go through it here.

© DataWeave 2019 Page 4 of 6 pages

http://flask.pocoo.org/
https://www.djangoproject.com/
http://bottlepy.org/docs/dev/index.html

We finally settled on Bottle as our choice of framework. The reasons are

simple. Bottle is monolithic, i.e., it uses the one-file approach. For small

applications, this makes for code that is easier to read and maintainable.

Some sample web address routes are shown here:

#show all tracked accounts

id_legend = {57947109 : 'Flipkart', 183093247: 'HomeShop18', 89443197: 'Myntra', 43133

6956: 'Jabong'}

@route('/ids')

 def get_ids():

 result = json.dumps(id_legend)

 return result

#show all user mentions for a particular account @route(‘/user_mentions’)

def user_mention():

 m = request.query.id

 ac_id = int(m)

 t = list(tweets.find({'created_at': { '$gte': fourteen_days_ago }, 'retweeted': 'n

o', 'user_id': { '$ne': ac_id} }))

 a = len(t)

 mylist = []

 for i in t:

 mylist.append({i.get('user_id'): i.get('id')})

 x = { 'num_of_mentions': a, 'mentions_details': mylist }

 result = json.dumps(x)

 return result

This is how the DataWeave Social API came into being. I had a great time

doing this, with special credits to Sanket, Mandar and Murthy for all the help

that they gave me for this. That’s all for now, folks!

© DataWeave 2019 Page 5 of 6 pages

Originally published at blog.dataweave.in.

- DataWeave Marketing

4th Aug, 2015

API

© DataWeave 2019 Page 6 of 6 pages

http://blog.dataweave.in/post/82384138657/implementing-dataweaves-social-api-for-social
https://dataweave.com/blog/author/marketing
https://dataweave.com/blog/year/2015
https://dataweave.com/blog/category/api

