
Social media can be defined as virtual communities and networks, where

social interaction takes place among people and a wide variety of content is

shared including ideas, opinions, information, pictures, videos and much

more. Due to the massive growth of social media in the last decade, it has

become a rage among data enthusiasts to tap into the vast pool of social

data and gather interesting insights like trending items, reception of newly

released products by society, popularity measures to name a few.

As you are aware, we are constantly evolving PriceWeave, which has the

most extensive set of offerings when it comes to providing actionable insights

to retail stores and brands. As part of the product development, we look at

social data from a variety of channels to mine things like: trending

products/brands; social engagement of stores/brands; what content “works”

and what doesn’t on social media, and so forth.

We do a number of experiments with Twitter data, and this series of blog

posts is one of the outputs from those efforts.

In some of our recent blog posts, we have seen how to look at current trends

and gather insights from YouTube the popular video sharing website. We

have also talked about how to create a quick bare-bones web application

to perform sentiment analysis of tweets from Twitter. Today I will be talking

about mining data from Twitter and doing much more with it than just

sentiment analysis. We will be analyzing Twitter data in depth and then we

will try to get some interesting insights from it.
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To get data from twitter, first we need to create a new Twitter application to

get OAuth credentials and access to their APIs. For doing this, head over to

the Twitter Application Management page and sign in with your Twitter

credentials. Once you are logged in, click on the Create New App button as

you can see in the snapshot below. Once you create the application, you will

be able to view it in your dashboard just like the application I created, named

DataScienceApp1_DS shows up in my dashboard depicted below.

On clicking the application, it will take you to your application management

dashboard. Here, you will find the necessary keys you need in the Keys and

Access Tokens section. The main tokens you need are highlighted in the

snapshot below.
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I will be doing most of my analysis using the Python programming language.

To be more specific, I will be using the IPython shell, but you are most

welcome to use the language of your choice, provided you get the relevant

API wrappers and necessary libraries.

Installing necessary packages

After obtaining the necessary tokens, we will be installing some necessary

libraries and packages, namely twitter, prettytable and matplotlib. Fire up

your terminal or command prompt and use the following commands to install

the libraries if you don’t have them already.

[root@dip]# pip install twitter [root@dip]# pip install pretty 

 

table [root@dip]# pip install matplotlib
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Creating a Twitter API Connection

Once the packages are installed, you can start writing some code. For this,

open up the IDE or text editor of your choice and use the following code

segment to create an authenticated connection to Twitter’s API. The way the

following code snippet works, is by using your OAuth credentials to create an

object called auth that represents your OAuth authorization. This is then

passed to a class called Twitter belonging to the twitter library and we create

a resource object named twitter_api that is capable of issuing queries to

Twitter’s API.

import twitter CONSUMER_KEY = 'REPLACE WITH YOUR KEY' 

 

CONSUMER_SECRET = 'REPLACE WITH YOUR SECRET' 

 

OAUTH_TOKEN = 'REPLACE WITH YOUR TOKEN' 

 

OAUTH_TOKEN_SECRET = 'REPLACE WITH YOUR TOKEN SECRET' 

 

auth = twitter.oauth.OAuth(OAUTH_TOKEN, OAUTH_TOKEN_SECRET, 

 

CONSUMER_KEY, CONSUMER_SECRET) twitter_api = twitter.Twitter 

 

(auth=auth) print twitter_api

If you do a print twitter_api and all your tokens are corrent, you should be

getting something similar to the snapshot below. This indicates that we’ve

successfully used OAuth credentials to gain authorization to query Twitter’s

API.

Exploring Trending Topics

Now that we have a working Twitter resource object, we can start issuing

requests to Twitter. Here, we will be looking at the topics which are currently

trending worldwide using some specific API calls. The API can also be

parameterized to constrain the topics to more specific locales and regions.

Each query uses a unique identifier which follows the Yahoo! GeoPlanet’s

Where On Earth (WOE) ID system, which is an API itself that aims to provide

a way to map a unique identifier to any named place on Earth. The following

code segment retrieves trending topics in the world, the US and in India.
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import json WORLD_WOE_ID = 1 US_WOE_ID = 23424977 

 

IND_WOE_ID = 23424848 world_trends = twitter_api.trends.place 

 

(_id=WORLD_WOE_ID) us_trends = twitter_api.trends.place 

 

(_id=US_WOE_ID) india_trends = twitter_api.trends.place 

 

(_id=IND_WOE_ID) print world_trends print us_trends print 

 

india_trends

Once you print the responses, you will see a bunch of outputs which look like

JSON data. To view the output in a pretty format, use the following

commands and you will get the output as a pretty printed JSON shown in the

snapshot below.
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To view all the trending topics in a convenient way, we will be using list

comprehensions to slice the data we need and print it using prettytable as

shown below.

from prettytable import PrettyTable world_trends = [trend 

 

['name'] for trend in world_trends[0]['trends']] us_trends = 

 

[trend['name'] for trend in us_trends[0]['trends']] 

 

india_trends = [trend['name'] for trend in india_trends[0] 

 

['trends']] pt = PrettyTable(field_names=['World Trends', 

 

'US Trends', 'India Trends']) for world_trend, us_trend, 

 

india_trend in zip(world_trends, us_trends, india_trends): 

 

pt.add_row([world_trend, us_trend, india_trend]) print pt

On printing the result, you will get a neatly tabulated list of current trends

which keep changing with time.

Now, we will try to analyze and see if some of these trends are common. For

that we use Python’s set data structure and compute intersections to get

common trends as shown in the snapshot below.
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Interestingly, some of the trending topics at this moment in the US are

common with some of the trending topics in the world. The same holds good

for US and India.

Mining for Tweets

In this section, we will be looking at ways to mine Twitter for retrieving tweets

based on specific queries and extracting useful information from the query

results. For this we will be using Twitter API’s GET search/tweets resource.

Since the Google Nexus 6 phone was launched recently, I will be using that as

my query string. You can use the following code segment to make a robust

API request to Twitter to get a size-able number of tweets.

query = 'Nexus6' count = 100 search_results = twitter 

_api.search.tweets(q=query, count=count) statuses = search_results['statuses']  

# Iterate through 5 more batches of results by following the cursor for _ in 

range(5): print "Length of status list", len(statuses) 

 try: next_results = search_results['search_metadata'] 

['next_results'] except KeyError, e: break # create a 

 dictionary of parameters to be passed to the search 

 

method kwargs = dict([kv.split('=') for kv in 

 

next_results[1:].split('&')]) search_results = twitter_api.search.tweets(**kwargs) sta

tuses += search_results['statuses'] # Print one sample tweet by slicing the list print 

json.dumps(statuses[0], 

 

indent=2)

The code snippet above, makes repeated requests to the Twitter Search API.

Search results contain a special search_metadata node that embeds a

next_results field with a query string that provides the basis of making a

subsequent query. If we weren’t using a library like twitter to make the HTTP

requests for us, this preconstructed query string would just be appended to

the Search API URL, and we’d update it with additional parameters for

handling OAuth. However, since we are not making our HTTP requests

directly, we must parse the query string into its constituent key/value pairs

and provide them as keyword arguments to the search/tweets API endpoint. I

have provided a snapshot below, showing how this dictionary of key/value

pairs are constructed which are passed as kwargs to the

Twitter.search.tweets(..) method.
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Analyzing the structure of a Tweet

In this section we will see what are the main features of a tweet and what

insights can be obtained from them. For this we will be taking a sample tweet

from our list of tweets and examining it closely. To get a detailed overview of

tweets, you can refer to this excellent resource created by Twitter. I have

extracted a sample tweet into the variable sample_tweet for ease of use.

sample_tweet.keys() returns the top-level fields for the tweet.

Typically, a tweet has some of the following data points which are of great

interest.

The identifier of the tweet can be accessed through sample_tweet[‘id’]

The human-readable text of a tweet is available through

sample_tweet[‘text’]

The entities in the text of a tweet are conveniently processed and

available through sample_tweet[‘entities’]

The “interestingness” of a tweet is available through

sample_tweet[‘favorite_count’] and sample_tweet[‘retweet_count’],

which return the number of times it’s been bookmarked or retweeted,

respectively

An important thing to note, is that, the retweet_count reflects the total

number of times the original tweet has been retweeted and should reflect

the same value in both the original tweet and all subsequent retweets. In

other words, retweets aren’t retweeted

The user details can be accessed through sample_tweet[‘user’] which

contains details like screen_name, friends_count, followers_count, name,

location and so on

Some of the above datapoints are depicted in the snapshot below for the

sample_tweet. Note, that the names have been changed to protect the
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identity of the entity that created the status.

Before we move on to the next section, my advice is that you should play

around with the sample tweet and consult the documentation to clarify all

your doubts. A good working knowledge of a tweet’s anatomy is critical to

effectively mining Twitter data.

Extracting Tweet Entities

In this section, we will be filtering out the text statuses of tweets and different

entities of tweets like hashtags. For this, we will be using list comprehensions

which are faster than normal looping constructs and yield substantial

perfomance gains. Use the following code snippet to extract the texts, screen

names and hashtags from the tweets. I have also displayed the first five

samples from each list just for clarity.

status_texts = [ status['text'] for status in statuses ] 

screen_names = [ user_mention['screen_name'] for status 

 

in statuses for user_mention in status['entities'] 

['user_mentions'] ] hashtags = [ hashtag['text'] 

 

for status in statuses for hashtag in status['entities'] 

['hashtags'] ] # get samples of first five entities 
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texts = status_texts[0:5] scr_names = list(set(screen_names))[0:5] hash_tags = hashtag

s[0:5] tweet_words = words[0:5] # display the results as a table pt = PrettyTable() p

t.add_column('Tweets', texts) pt.add_column('Screen Names',scr_names) pt.add_column('H

ashTags', hash_tags)pt.add_column('Words', tweet_words)

Once you print the table, you should be getting a table of the sample data

which should look something like the table below but with different content

ofcourse!

Frequency Analysis of Tweet and Tweet Entities

Once we have all the required data in relevant data structures, we will do

some analysis on it. The most common analysis would be a frequency analysis

where we find out the most common terms occurring in different entities of

the tweets. For this we will be making use of the collection module. The

following code snippet ranks the top ten most occurring tweet entities and

prints them as a table.

from collections import Counter # get top ten entities

top_words = [item[0] for item in Counter 

(words).most_common()[:10]] top_words_freq = [item[1] for item in Counter(words).most_

common()[:10]] 

 

top_screen_names = [item[0] for item in Counter 

(screen_names).most_common()[:10]] top_screen_names_free = [item[1] for item in Counte

r(screen_names) 

 

.most_common()[:10]] top_hashtags = [item[0] for item in Counter(hashtags).most_common

()[:10]] 

 

top_hashtags_freq = [item[1] for item in Counter(hashtags).most_common()[:10]]  

# print the results as a table pt = PrettyTable()  

pt.add_column('Words',top_words)  

pt.add_column('Frequency',top_words_freq)  

pt.add_column('Screen Names',top_screen_names)  

pt.add_column('Frequency',top_screen_names_freq)  
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pt.add_column('Hashtags',top_hashtags)  

pt.add_column('Frequency',top_hashtags_freq) print pt

The output I obtained is shown in the snapshot below. As you can see, there

is a lot of noise in the tweets because of which several meaningless terms and

symbols have crept into the top ten list. For this, we can use some pre-

processing and data cleaning techniques.

Analyzing the Lexical Diversity of Tweets

A slightly more advanced measurement that involves calculating simple

frequencies and can be applied to unstructured text is a metric called lexical

diversity. Mathematically, lexical diversity can be defined as an expression of

the number of unique tokens in the text divided by the total number of tokens

in the text. Let us take an example to understand this better. Suppose you are

listening to someone who repeatedly says “and stuff” to broadly generalize

information as opposed to providing specific examples to reinforce points

with more detail or clarity. Now, contrast that speaker to someone else who

seldom uses the word “stuff” to generalize and instead reinforces points with

concrete examples. The speaker who repeatedly says “and stuff” would have

a lower lexical diversity than the speaker who uses a more diverse vocabulary.

The following code snippet, computes the lexical diversity for status texts,

screen names, and hashtags for our data set. We also measure the average

number of words per tweet.

# A function for computing lexical diversity

def lexical_diversity(tokens): return 1.0*len(set(tokens))/len(tokens)  

#A function for computing the average number of words per tweet def average_words(stat

uses): total_words = sum([len(s.split()) for s in statuses ]) return 
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1.0*total_words/len(statuses)  

print lexical_diversity(words)  

print lexical_diversity(screen_names) 

print lexical_diversity(hashtags) 

print average_words(status_texts)

The output which I obtained is depicted in the snapshot below.

Now, I am sure you must be thinking, what on earth do the above numbers

indicate? We can analyze the above results as follows.

The lexical diversity of the words in the text of the tweets is around 0.097.

This can be interpreted as, each status update carries around 9.7% unique

information. The reason for this is because, most of the tweets would

contain terms like Android, Nexus 6, Google

The lexical diversity of the screen names, however, is even higher, with a

value of 0.59 or 59%, which means that about 29 out of 49 screen names

mentioned are unique. This is obviously higher because in the data set,

different people will be posting about Nexus 6

The lexical diversity of the hashtags is extremely low at a value of around

0.029 or 2.9%, implying that very few values other than the #Nexus6

hashtag appear multiple times in the results. This is relevant because

tweets about Nexus 6 should contain this hashtag

The average number of words per tweet is around 18 words

This gives us some interesting insights like people mostly talk about Nexus 6

when queried for that search keyword. Also, if we look at the top hashtags,

we see that Nexus 5 co-occurs a lot with Nexus 6. This might be an indication

that people are comparing these phones when they are tweeting.

Examining Patterns in Retweets

In this section, we will analyze our data to determine if there were any

particular tweets that were highly retweeted. The approach we’ll take to find

 

© DataWeave 2019 Page 12 of 18 pages

https://cdnblog.dataweave.com/wp-content/uploads/2016/05/d2.png


the most popular retweets, is to simply iterate over each status update and

store out the retweet count, the originator of the retweet, and status text of

the retweet, if the status update is a retweet. We will be using a list

comprehension and sort by the retweet count to display the top few results in

the following code snippet.

retweets = [ # Store out a tuple of following three values (status['retweet_count'],st

atus['retweeted_status']['user'] 

['screen_name'], status['text'])  

 

# for each status for status in statuses  

# as long as the status has been retweeted if status.has_key('retweeted_status') ]  

# Display the top 5 retweets with necessary fields  

 

pt = PrettyTable(field_names= 

['Count', 'Screen Name', 'Text']) 

[ pt.add_row(row) for row in sorted 

(retweets, reverse=True)[:5] ] pt.max_width 

['Text'] = 50 print pt 

 

The output I obtained is depicted in the following snapshot.
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From the results, we see that the top most retweet is from the

official googlenexus channel on Twitter and the tweet speaks about the

phone being used non-stop for 6 hours on only a 15 minute charge. Thus, you

can see that this has definitely been received positively by the users based on

its retweet count. You can detect similar interesting patterns in retweets

based on the topics of your choice.

Visualizing Frequency Data

In this section, we will be creating some interesting visualizations from our

data set. For plotting we will be using matplotlib, a popular Python plotting

library which comes inbuilt with IPython. If you don’t have matplotlib loaded

by default use the command import matplotlib.pyplot as plt in your code.

Visualizing word frequencies

In our first plot, we will be displayings the results from the words variable

which contains different words from the tweet status texts. Using Counter

from the collections package, we generate a sorted list of tuples, where each

tuple is a (word, frequency) pair. The x-axis value will correspond to the index

of the tuple, and the y-axis will correspond to the frequency for the word in

that tuple. We transform both axes into a logarithmic scale because of the

vast number of data points.
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Visualizing words, screen names, and hashtags

A line chart of frequency values is decent enough. But what if we want to find

out the number of words having a frequency between 1–5, 5–10, 10–15… and so

on. For this purpose we will be using a histogram to depict the frequencies.

The following code snippet achieves the same.

for label, data in (('Words', words), ('Screen Names', screen_names), ('Hashtags', has

htags)): # Build a frequency map for each set of data and plot the values c = Counter

(data) plt.hist(c.values()) # Add a title labels plt.title(label) plt.ylabel("Number o

f items in a bin") plt.xlabel("Bins (number of times an item appeared)") # Display as 

a new figure plt.figure()

What this essentially does is, it takes all the frequencies and groups them

together and creates bins or ranges and plots the number of entities which

fall in that bin or range. The plots I obtained are shown below.
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From the above plots, we can observe that, all the three plots follow the

“Pareto Principle” i.e, almost 80% of the words, screen names and hashtags

have a frequency of only 20% in the whole data set and only 20% of the

words, screen names and hashtags have a frequency of more than 80% in the

data set. In short, if we consider hashtags, a lot of hashtags occur maybe only

once or twice in the whole data set and very few hashtags like #Nexus6 occur

in almost all the tweets in the data set leading to its high frequency value.

Visualizing retweets

In this visualization, we will be using a histogram to visualize retweet counts

using the following code snippet.

# Using underscores while unpacking values in a tuple is idiomatic for discarding them 

counts = [count for count, _, _ in retweets] plt.hist(counts) plt.title("Retweets") pl

t.xlabel('Bins (number of times retweeted)') plt.ylabel('Number of tweets in bin') pri

nt counts

The plot which I obtained is shown below.
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Looking at the frequency counts, it is clear that very few retweets have a

large count.

I hope you have seen by now, how powerful Twitter APIs are and using simple

Python libraries and modules, it is really easy to generate very powerful and

interesting insights. That’s all for now folks! I will be talking more about

Twitter Mining in another post sometime in the future. A ton of thanks goes

out to Matthew A. Russell and his excellent book Mining the Social Web,

without which this post would never have been possible.

- DataWeave Marketing 

31st May, 2016
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